If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2=-4n+32
We move all terms to the left:
n^2-(-4n+32)=0
We get rid of parentheses
n^2+4n-32=0
a = 1; b = 4; c = -32;
Δ = b2-4ac
Δ = 42-4·1·(-32)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-12}{2*1}=\frac{-16}{2} =-8 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+12}{2*1}=\frac{8}{2} =4 $
| 5(x-3)+3=8 | | -5n=-3-5n | | 4x+1/3(18x-45)=7x+1-10 | | 15/k=6/22 | | 7^(x+1)^2=100 | | a+3+8a=13+8a | | 3x-1/4-X+6/3=3/2 | | 05n+34=-2(1-7n | | 4a-10=a+4 | | 5/14=h/18 | | 4a-10=a+40 | | 1/2(4x+14)=2(-7) | | 7x-6=5x-6+2x | | 2=4x+6=9 | | -4+v=-9 | | C=38.79+0.25x | | n+3=12+2n | | 2/3b+5=20-b | | -3w(2w-1)-1(w-3)=6 | | 73/4x=62/7 | | 6n-19=-3-2n | | y=1/3*0+3 | | 3(x-7)-x=2x=21 | | 7/6=8/x+5 | | 4/x-2-3/x+1=8/(x-2)(x+1) | | 21−2z=55 | | 8(x–3)+14=2(4x+5) | | 3x-5=19-x+2x | | 5-y=272 | | 5x+10=5(x+2 | | 9y=40+y | | -4+3w=-13 |